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LOCKEAN BELIEFS, DUTCH BOOKS, AND
SCORING SYSTEMS

Abstract
On the Lockean thesis one ought to believe a proposition if and only

if one assigns it a credence at or above a threshold (Foley 1992). The
Lockean thesis, thus, provides a way of characterizing sets of all-or-nothing
beliefs. Here we give two independent characterizations of the sets of
beliefs satisfying the Lockean thesis. One is in terms of betting dispositions
associated with full beliefs and one is in terms of an accuracy scoring
system for full beliefs. These characterizations are parallel to, but not
merely derivative from, the more familiar Dutch Book (de Finetti 1974)
and accuracy (Joyce 1998) arguments for probabilism.

1 INTRODUCTION

The Lockean thesis is a way of connecting all-or-nothing beliefs to graded beliefs
(Foley 1992). On the Lockean thesis to have an all-or-nothing belief in a proposi-
tion is just to assign that proposition a credence at or above a certain threshold.1

One of the interesting and controversial features of Lockeanism is that it does
not require that one’s beliefs either be closed under logical implication or even
be logically consistent. For a failure of closure note that at any threshold less
than one it is possible, on the Lockean thesis, to believe two atomic propositions
P and Q while not believing their conjunction P&Q.2 For a failure of consistency
note that at a threshold of .6 it is possible to believe two propositions P and Q,
while also believing the negation of their conjunction, ¬(P&Q).3

So, the Lockean thesis (at thresholds less than one) does not require that one’s
beliefs be either logically closed or logically consistent. We might want to ask
what constraints the Lockean thesis does put on one’s beliefs. Some constraints
are well-known: for example, if the threshold for belief is greater than .5, then,
on the Lockean thesis, one cannot hold pairwise inconsistent beliefs.4 However,

I am grateful to audiences at London School of Economics and University of Amsterdam, Gary Cham-
berlain, Nilanjan Das, Kevin Dorst, Kenny Easwaran, Branden Fitelson, Wes Holliday, Matt Mandelkern,
Richard Pettigrew and Linda Rothschild for comments and discussion. Special thanks to two anonymous
referees at Review of Symbolic Logic.

1Sometimes the Lockean thesis is framed as one about what one ought to believe, rather than about
what one does believe. The difference is not essential here.

2See Leitgeb (2014) for an exploration of constraints, other than having a threshold of 1, on credences
and thresholds that ensure closure (and consistency).

3Assume you assign a credence of .6 to P and .6 to Q, then you can assign at most .8 to ¬(P&Q).
4See, e.g., Hawthorne & Bovens (1999) for this and related observations.
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these constraints do not give necessary and sufficient conditions for satisfying the
Lockean thesis. For, as we will see in section 3, there are sets of beliefs that are
pairwise consistent but that cannot be believed by a Lockean with t > .5. Pairwise
consistency is thus a necessary but not sufficient condition for the Lockean thesis
with t > .5.

In this paper, I present two types of characterizations of sets of beliefs for
Lockean agents. I draw on a pair of related traditions for characterizing graded
beliefs. The first tradition is that of the Dutch Book argument for probabilism.
In this tradition, graded beliefs can be characterized by how they rationalize
bets. Very roughly speaking, the Dutch Book argument establishes that a set
of numerically graded beliefs is probabilistically coherent if and only if there
is no collection of bets it rationalizes that leads to a sure loss.5 The second
tradition is that of the accuracy argument for probabilism. In this tradition,
numerical credences are given scores corresponding to their accuracy.6 The
standard genre of result in this area is to establish that the numerical credences
that are probabilistically coherent are equivalent to those that are not dominated
in all worlds by another set of credences.

In the case of graded beliefs, both Dutch Book arguments and accuracy
arguments are used to characterize probabilistically coherent beliefs. What I
show here is that these arguments can also be used to characterize all-or-nothing
beliefs satisfying the Lockean hypothesis.

It is worth noting that such a characterization is not directly extractable
from the current literature. For accuracy arguments and Dutch Book arguments
characterize probabilistically coherent numerical credences, and probabilistically
coherent beliefs have a many-to-one relationship to Lockean belief sets.

What I give here is a direct characterization of Lockeanism via betting dis-
positions and accuracy scoring rules. To do this I propose mappings from sets
of all-or-nothing beliefs to betting dispositions and scores and then show that,
relative to these mappings, Lockean belief sets can be characterized by properties
of betting dispositions and scores.

In the accuracy tradition there is already a small literature that addresses
how the Lockean thesis fares vis-a-vis accuracy arguments.7 This paper advances
that literature by providing more general results than previously available and
by proving, as a corollary of these results, the main conjecture of Easwaran
(2016). There is, by contrast, no literature that I am aware of relating Dutch
Book arguments to the Lockean account of belief. This paper fills that lacuna by
giving two Dutch Book results for the Lockean account of belief.

5This argument goes back to Ramsey (1926), de Finetti (1974). See Pettigrew (2019) for a recent
book-length review and discussion.

6See, e.g., Joyce (1998) and Pettigrew (2016a) . This work is, in turn, dependent on the tradition of
scoring graded predictions for their accuracy going back at least to Brier (1950); see Gneiting & Raftery
(2007) for a recent discussion.

7For example, Easwaran & Fitelson (2015), Pettigrew (2016b), Easwaran (2016), Dorst (2019).
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The significance of these results varies depending on your starting assump-
tions. For example, these results show that if a set of full beliefs satisfy certain
decision-theoretic properties relative to a range of scoring systems then they
are compatible with the Lockean thesis. If you think of full belief as basic and
use Lockeanism as a way to derive ranges of graded beliefs from them (as in
Easwaran 2016), then these results gives you the conditions on which this is
possible. Likewise, if, as in classical works in decision theory, you take certain
kinds of betting dispositions as basic, these results give necessary conditions
for the dispositions to be associated with sets of full beliefs. More generally,
these results make connections between three ways of thinking about epistemic
commitments: graded beliefs, full beliefs, and betting dispositions.

Here is the plan: In the next section, §2, I outline the basic formal framework
for modeling full beliefs. In section §3 I define three different ways in which
sets of full beliefs can be said to satisfy the Lockean thesis. In §4, I discuss ways
of deriving betting dispositions from full beliefs and what it takes for those
dispositions to be subject to a Dutch Book. In §5, I give an accuracy scoring
system for full beliefs and state some standard decision-theoretic properties of
full belief sets relative to the system. In the main section, §6, I give results linking
these different ways of thinking about full beliefs. I discuss the significance of
these results in §7 and outline a few directions for future work in §8.

2 FRAMEWORK

Let W be a finite set of worlds, which we will enumerate w1 . . . wm, let P denote
the set of proposition 2W ,8 enumerated p1 . . . pn, with n = 2n. Let B ⊆ P be a
subset of o beliefs, o ≤ n, enumerated b1 . . . bo. Let t be a real number, 0< t ≤ 1,
which we’ll call the threshold. We think of B as representing the set of propositions
an agent believes (and hence P\B is the set of propositions the agent doesn’t
believe). In the following next three sections we define various properties that
B can have, always in terms of the threshold t. These properties fall into three
categories: Lockean properties, betting properties, and accuracy properties.

3 LOCKEAN BELIEF SETS

On the Lockean thesis one should believe a proposition p if and only if you assign
it a credence greater than or equal to some threshold t. In this section we will
define three different versions of the Lockean thesis.

Let us begin by defining credences. A CREDENCE FUNCTION is a function c
from P to [0,1] such that c(W ) = 1, c(;) = 0 and for any X ⊆ W , c(X ) =
∑

w∈W c({w}).9

8Notation: 2X is the powerset of X .
9This is equivalent to saying 〈W, P, c〉 is a probability space. Note that, unlike in standard Dutch Book

arguments, we are here stipulating that credences satisfy the axioms of probability theory.
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Since we use linear algebra to prove most of our main results it will be useful
to rephrase some of the notions in terms of vectors. We correspond to each
proposition p an m-dimensional vector p= 〈p1, . . . , pm〉 such that

pi =

¨

1 if wi ∈ p

0 otherwise
.

We correspond to the credence function c the vector c = 〈c1 . . . cm〉 such that
ci = c({wi}). In this case it is easy to see that c(p) = c · p. 10,

We begin with the weakest sense in which B can satisfy the Lockean thesis
relative to the threshold t. The set of beliefs B is LOCKEAN COMPATIBLE relative to
the threshold t iff there is a credence function c such that: c(b)≥ t (or c ·b≥ t)
for all b ∈ B.

To say that B is Lockean Compatible is not equivalent to saying that B can
be a Lockean’s total set of beliefs. For if a Lockean’s belief set B contains two
propositions x and y it also ought to contain x ∪ y , but Lockean Compatibility
does not guarantee this.

For this reason, we will define two stronger notions as well. The set of
beliefs B is LOCKEAN COMPLETE at threshold t iff there is a credence function
c such that c(p) ≥ t iff p ∈ B for all p ∈ P. We will also use a weakening of
Lockean Completeness to allow cases where belief is optional at the threshold t.
We say B is ALMOST LOCKEAN COMPLETE relative to a threshold t iff there is a
credence function c such that for all p ∈ P if c(p)> t then p ∈ B and if c(p)< t
then p 6∈ B. As we shall see, this last notion connects more naturally with the
decision-theoretic notions we define in relation to accuracy scoring.

We can now prove the claim in the introduction that there are sets of beliefs
that are pairwise compatible but are not holdable by the Lockean with t > .5. A
belief set B is PAIRWISE COMPATIBLE iff for all b, b′ ∈ B, b∩b′ 6= ;. It is well known
that this is a necessary condition for Lockean Compatibility, Completeness, or
Almost Completeness for t > .5.11 However it is not a sufficient condition for
any of these properties as the following result shows:

Observation 1. For any t > 0, there is a set of beliefs B that is pairwise compatible
but not Lockean Compatible at t.

Proof. Let W be the set {{i, j}〉 : i, j are positive integers less than or equal to n},
for B, enumerated b1 . . . bn, such that bk = {{i, j} ∈ W : i = k or j = k}. Note
that each pair propositions in B has one world in its intersection, so B is pairwise
compatible. Each element of B contains exactly n worlds and |W |= 2n. So for
any credence function, c one element of B, b, must be such that c(b)≤ n

2n (since

10For two n-dimensional vectors, x= 〈x1 . . . xn〉 and y= 〈y1 . . . yn〉, their inner product, y · x, is x1 y1 +
. . .+ xn yn.

11This is because if two propositions are disjoint then both their probabilities cannot be greater than
.5.
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we maximize the minimum probability among B by the uniform distribution).
By choosing a large enough n we can make n

2n arbitrarily small.

Note that since Lockean Compatibility is the weakest of our three notions,
we also cannot use pairwise compatibility to give sufficient conditions for being
Lockean Complete or Almost Lockean Complete.12

4 BETTING ON BELIEFS

Dutch Book arguments traditionally assume that an agent’s rational betting
behavior is determined by their credences. Dutch Book arguments are used to
show for the thesis that a rational agent’s credences are probabilistic (something
we assumed above in the definition of credences). The leading assumption behind
the Dutch Book argument is that credences determine a rational agent’s betting
preferences. The arguments typically assume some divisible good in which
an agent’s utility is linear (conventionally assumed to be dollars). Expected
utility theory provides a standard way of linking rational betting dispositions
to credences: a rational agent acts in order to maximize her utility relative to
here credences. Thus, if offered a bet, an agent ought to be willing to take it
only if she expects to gain by it or at least not lose by it. Indeed the very idea of
credences or subjective probability is often considered to be determined by or
to determine betting behavior.13 On this framework it is typically assumed that
if an agent has a credence y in a proposition p then she ought to be willing to
buy or sell a bet that pays out $1 if p is true and $0 otherwise (we’ll call this bet
a bet for p) for the price $y. This is because the agent’s expected return from
the bet is $y . (In the decision theoretic framework, the agent is also rationally
obliged to buy the bet for any lower value and sell it for any higher value.) A
Dutch Book is a way of exploiting these dispositions, by presenting an agent
with a collection of bets she is willing to take which will result in a sure loss for
the agent, and, hence, a sure gain for the bookie (i.e. the person offering the
bets). Traditional Dutch Book arguments show that, roughly, an agent will not
be subject to a Dutch Book if and and only if her credences are probabilistically
coherent.14

It is less straightforward to link all-or-nothing beliefs to betting behavior.
The Lockean thesis, however, by providing a link between belief and credence
suggests some ways of linking beliefs to betting behavior. On the Lockean thesis
an agent ought to believe p if and only if she assigns p a credence greater than
or equal to t. The agent, then, for each belief b ought to be willing to buy a bet
for b for $t (or a lower price), since her expected return of the bet is greater

12Note that the combination of single premise closure (for every b ∈ B if p ⊇ b then p ∈ B) and
pairwise compatibility also does not yield necessary and sufficient conditions for a Lockean complete sets
of beliefs.

13As in Ramsey (1926).
14See Pettigrew (2019) for a recent review of these arguments.
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than or equal to zero. So we start with the assumption that there are some bets
that a Lockean agent ought to be willing to buy (in any quantities). If there is a
collection of such bets for an agent that guarantee her a loss at each world then
the agent’s beliefs B is subject to a ONE-WAY DUTCH BOOK with respect to t.

To state the notion of a one-way Dutch Book formally we will again use
vector notation. For an agent’s beliefs b1, . . . , bo we can use a non-negative o-
dimensional vector x, the stake vector, to represent the number of bets the agent
buys for each proposition b1, . . . , bo (i.e. the agent buys x i bets for bi).

15 We
assume here that all bets are priced at $t since that is the highest price that the
Lockean view guarantees the agent will be willing to pay. At a world w these
bets lead to the payoff,

∑

1≤i≤o,w∈bi

x i(1− t) +
∑

1≤i≤o,w6∈bi

−x i t.

By associating each world w with an o-dimensional vector w, such that

wi =

¨

(1− t) if w ∈ bi

−t otherwise
, (1)

the payoff at w can be concisely stated as w ·x. A collection of beliefs b1, . . . , bo is
subject to a one-way Dutch Book just in case there is some vector of non-negative
stakes x such that for all worlds w, x ·w< 0.

A one-way Dutch Book only takes advantage of the beliefs B = b1, . . . , bo the
agent has, it does not exploit those propositions she does not belief, i.e. P\B. On
the Lockean view, the agent must have less than t credence in the propositions
not in B. She, thus, ought to be willing to sell $1 bets on each proposition in P\B
for $t each. A TWO-WAY DUTCH BOOK is a collection of bets in B that the agent
is willing to buy at $t and a collection of bets in P\B she is willing to sell at $t
that together guarantee her a loss.

We will formally state the notion of two-way Dutch Book in vector notation.
Let a non-negative n-dimensional vector x represent the stakes an agent takes
in bets costing $t on the propositions p1, . . . , pn as follows: if pi is one of the
agent’s beliefs then she buys x i bets, if pi is not one of the agent’s beliefs then
she sells x i bets.16 That x is required to be nonnegative captures the fact that the
choice of buying or selling a bet in a proposition is determined by whether or
not the proposition is believed by the agent.

15We are using an o-dimensional vector to represent a function from B to non-negative stakes.
16Note that we reuse x and w for both o-dimensional and n-dimensional vectors. This abuse of notation

is justified because of the similar construction and role these vectors play across different arguments and
definitions. It will always be clear, I hope, which one we are discussing.
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The payout an agent gets for stakes x with the set of beliefs B at a world w is:
∑

pi∈B,pi∈w

x i(1− t) +
∑

pi∈B,pi 6∈w

−x i t +
∑

pi 6∈B,pi∈w

−x i(1− t) +
∑

pi 6∈B,pi /∈w

x i t.

We can represent this as x ·w, where the n-dimensional vector w is defined as
follows:

wi =























1− t if pi ∈ B, pi ∈ w

−t if pi ∈ B, pi 6∈ w

−(1− t) if pi 6∈ B, pi ∈ w

t if pi 6∈ B, pi /∈ w

. (2)

An agent is subject to a two-way Dutch Book if there is a non-negative n-
dimensional stake vector x such that for each world w, x · w < 0. In other
words, there is a set of bets the agent’s beliefs rationalize that leads to a loss at
each world.

5 SCORING BELIEFS FOR ACCURACY

Another perspective associates sets of beliefs with scores, depending on the
accuracy of the beliefs in the set. The picture here is that an agents’ beliefs B are
scored for their accuracy. Scoring all-or-nothing beliefs is simpler conceptually
than scoring graded beliefs: while saying whether a real-valued confidence in a
proposition is right or wrong at a world is a tricky business, saying whether a
belief is right or wrong is straightforward.17 For this reason, we’ll jump right into
how to score sets of all-or-nothing beliefs without comparison to the scoring of
graded beliefs.

We’ll consider a scoring system for beliefs following Easwaran & Fitelson
(2015), Easwaran (2016) and Dorst (2019). The crucial assumption made in
this literature is that we assign scores to an agent for their total beliefs at a
world by assigning numerical scores to individual propositions believed and
summing those scores.18 We will further assume that at a world w if a belief in a
proposition pi turns out to be correct (i.e. w ∈ pi) then the agent gets a certain
non-negative score ri ≥ 0, and if it is incorrect (i.e. w /∈ pi) the agent gets a
non-positive score, si ≤ 0. Note that if an agent fails to believe a proposition
there is no score associated with that proposition. We will further assume that the
ratio between the reward for true belief and penalty for false belief is constant
across propositions so that for any two propositions pi and p j,

ri
si
=

r j

s j
, if all of

ri > 0, si > 0,r j > 0 and s j are non-zero.19 We also assume that for any pi, ri = 0

17See Gneiting & Raftery (2007) for a review of scoring rules for graded beliefs.
18The additivity assumption, that the total score for one’s beliefs is just the sum of the individual scores,

is defended by Dorst (2019).
19We can remove this assumption, but then we need to relate this scoring system to a slightly different

definition of Lockeanism in which there is a different threshold for belief in each proposition, see Easwaran
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iff si = 0. On this system of scoring beliefs, at a world w a set of beliefs B gets
the score

S(w, B) =
∑

w∈pi ,pi∈B

ri +
∑

w/∈pi ,pi∈B

si.

We now rephrase this scoring system in a way that makes more transparent
its connection to Lockeanism. Using the threshold t, for reasons that will become
apparent, let t = −si

ri−si
, for some i such that ri > 0. Note that t does not depend

on the choice of i and 0 ≤ t ≤ 1. Let x i = ri − si. Note that −t x i = si and
(1− t)x i = ri. We will refer to x i as the WEIGHT on the score for proposition pi,
as the higher an x i is the more extreme a score the proposition pi has, relative to
a fixed t. Note that x i is always non-negative. Let x be the m-dimensional vector
whose ith entry is x i. Given this mapping, it is clear that any scoring system, as
defined in the previous paragraph, can be fully specified by giving a t : 0< t ≤ 1
and a non-negative n-dimensional vector x. In what follows, we will specify
scoring systems in terms of t and x without loss of generality.

Let w, again, be the o-dimensional vector defined in (1) on page 6. Let x,
the weight vector, be a non-negative o-dimensional vector giving the weights on
a scoring system for the propositions b1, . . . , bn.20 The agents total score at w,
S(w, B) can be concisely stated in vector notation as w · x.

Since we have a scoring system for beliefs, we can apply some standard
notions from decision theory to the choice of belief sets. A choice of a set of
beliefs B is a SURE LOSS if for every world w, S(w, B) < 0. A belief set B is
RATIONAL for an agent given a credence function c if and only if there is no
other set B′ such the expected score of B on c, E(S(w, B′)), is greater than the
expected score of B′ on c, E(S(w, B′)).21 The choice of one set of beliefs B STRICTLY

DOMINATES another choice of beliefs, B′ if for all worlds w, S(w, B) > S(w, B′).
A set of beliefs B WEAKLY DOMINATES another set of beliefs, B′, if for all worlds
w, S(w, B) ≥ S(w, B′) and there is some world w′ such that S(w, B) > S(w, B′).
Note that all of these notions are only defined relative to the scoring system, and
hence the weight vector x (for all propositions) as well as the threshold t.

6 CONNECTING THE THREE PERSPECTIVES

First, we will draw some connections between properties of Dutch Books and
properties of scoring systems on our framework.

Observation 2. For any set of worlds W = w1, . . . , wm, set of beliefs B = b1, . . . , bo,
and positive real number t ≤ 1, the following two statements are equivalent.

(a) The agent holding B is subject to a one-way Dutch Book at threshold t.

(2016, Appendix F), Dorst (2019), for details.
20These are the only weights necessary for determining the score for the set of beliefs B, which is why

we do not use our original n-dimensional weight vector also called x. Again the reuse of the x and w for
both o-dimensional and n-dimensional vectors is to emphasize their parallel roles.

21Where E(S(w, B)) =
∑

w∈W c({w})S(w, B)
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(b) At some weight vector x the agent holding B will realize a sure loss (i.e. a loss
at all worlds) at threshold t.

Proof. Corresponding to each world w there is an o-dimensional vector w as
defined in (1) on page 6. Note that x ·w is both the payoff at w from holding
bets on B with stake vector x with threshold t and the score one gets at w for
having beliefs B with weight vector x and threshold t. So, both (a) and (b) are
equivalent to the statement that there is some non-negative o-dimensional vector
x such that for every world w, x ·w< 0.

Another, less obvious, connection between scoring and betting can be made
as follows:

Observation 3. For any set of worlds W = w1, . . . , wm, set of beliefs B = b1, . . . , bo,
and positive real number t ≤ 1 the following two statements are equivalent.

(a) The agent holding B is subject to a two-way Dutch Book at threshold t.

(b) The set of beliefs B is strictly dominated by another set of beliefs B′ on the
scoring system with threshold t and some weight vector x.

Proof. We will start by showing (a) implies (b): Let w be a non-negative n-
dimensional vector as defined in (2) on page 7. Since B is subject to a two-way
Dutch Book we know that there is some weight vector x such that for every world
w, w · x< 0. In scoring terms w · x represents the score at world w for holding B
minus the score for holding P\B. So P\B strictly dominates B on weights x.

Now we will show that (b) implies (a). If B is strictly dominated we know
that there is some other set of bets B′ and some set of non-negative weights x
such that for every world w the score for holding B with t and x is strictly less
then the score for holding B′. Now define x′ such that,

x ′i =

¨

x i if bi ∈ B\B′ ∪ B′\B
0 otherwise

It is straightforward to see that on x′, B′ strictly dominates B: since B strictly
dominates B′ on x, and x′ is like x except for not weighting propositions held in
common by B and B′. We can also see that P\B strictly dominates B on x′ since
the scores for P\B and B′ on x′ are equal at every world. Since x′ ·w is the score
for holding B minus the score for holding P\B, it must be negative for every w.
Therefore x′ are the stakes for a two-way Dutch Book.

We have just seen the close relationship between betting dominance and
accuracy dominance of a set of beliefs B. Now we can make connections between
these and Lockeanism.
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We begin by reviewing a connection between the scoring system and Lock-
eanism that has been established in the literature. The central result in the
literature is the following.22

Observation 4. Given a scoring system with threshold t, a set of beliefs is rational
relative to some credences c if it is Almost Lockean Complete with respect to t.

Proof. We give a sketch, referring the reader to Dorst (2019) and Easwaran
(2016) for more detail. Given the additivity of our scoring system and of expec-
tations, an agent maximizes expected score for the total set of beliefs, by making
the ‘best’ choice for each proposition p whether to belief it or not. If the scoring
system assign a positive weight to p this requires believing p only if c(p) ≥ t
and whenever c(p)> t, hence being Almost Lockean Complete. Note that since
weights are not required to be positive the converse fails.

Relating rationality, which is expressed in terms of credences, to Lockeanism
is straightforward as the previous result showed. The notion of sure-loss and the
dominance relations are not stated in terms of credences and so their relationship
to Lockeanism less transparent. We begin with a negative observation, due to
Easwaran (2016). Suppose a belief set B is not weakly dominated on the scoring
system with weights x and threshold t. This does not entail that B is (Almost)
Lockean Complete. A simple example suffices, where there are two worlds w1, w2

and threshold .6 and all propositions have weight 1 except {w1}which has weight
100. In this case the belief set {{w1}, {w2}, {w1, w2, }} is not weakly dominated. It
yields score 40 at w1 and -59.2 at w2. Dropping {w1}would reduce the score at w1

while dropping {w2} would reduce the score at w2, while dropping both would
reduce the score at w1. However, given the threshold of .6 an Almost Lockean
Complete set of beliefs cannot include two pairwise incompatible propositions
such as a {w1} and {w2}.

We now turn to our main results: characterizations of Lockean Compatibility
and Almost Lockean Completeness in betting and scoring terms.

Here is our first result:

Theorem 1. The following three statements are equivalent.

(a) The agent holding B is not subject to a one-way Dutch Book at threshold t.

(b) There is no weight vector x such that the agent holding B will realize sure-loss
at threshold t.

(c) B is Lockean Compatible with threshold t.

Proof. As we have already showed that (a) and (b) are equivalent in Observation
2, we will only need to show that (c) is equivalent to those two. To do so we will
need to represent the entire situation in terms of matrix-vector multiplication.

22See Easwaran (2016) and Dorst (2019). Both generalize to cases where t is proposition dependent.
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Consider the m× o matrix A, constructed so that each row i consists of the
row vector wi corresponding to the world wi as defined in (1) on page 6.

A=





w1
...

wm





Or equivalently we can directly define A as follows:

A=





a11 . . . a1o

. . . . . . . . .
am1 . . . amn



 ,

where:

ai j =

¨

1− t if wi is in b j

−t otherwise
.

Note that if we multiply A by an o-dimensional column vector x we get the
following:

Ax=





w1 · x
...

wm · x



 .

We can see, then, that iff there is no non-negative x such that Ax< 0 then (a)
and (b) hold.23 So, to put it more compactly, (a) and (b) are equivalent to the
following holding: >x≥ 0 : Ax< 0 (3)

Consider an m-dimensional vector corresponding to some credence function
c, as in section 3. Now consider multiplying such a vector in row format by A as
follows:

cT A=
�

c1, . . . , cm

�





a11 . . . a1o

. . . . . . . . .
am1 . . . . . .





=
�∑

i:wi∈b1
ci(1− t)−

∑

i:wi /∈b1
ci t, . . . ,

∑

i:wi∈bo
ci(1− t)−

∑

i:wi /∈bo
ci(t)

�

=
�

c(b1)(1− t)− (1− c(b1))(t), . . . , c(bo)(1− t)− (1− c(bo))(t)
�

We can see that the ith coordinate of cT A is greater than or equal to 0 iff c(bi)≥ t.
Another way of seeing this is to note that the ith column of A is the vector bi

minus the vector t which has value t everywhere.24 Thus, the ith entry of cT A is
c · (p− t) = c · p− t. If this is greater than or equal to 0, then c(p)≥ t.

23Note that, as is standard, v< 0 means each coordinate of v, v1 . . . vk, is less than zero.
24Vectors for propositions were defined in section 3 and simply are m-dimensional vectors that are 1

at index i when proposition is true at wi and 0 otherwise.
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We can now compactly state what it is for a set of beliefs to satisfy (c) as
follows:

∃y≥ 0 : y 6= 0, and yA≥ 0. (4)

Note that we do not require y to sum to 1 in (4). However, it is easy to see that
(4) is equivalent to

∃y≥ 0,y 6= 0,yA≥ 0, and
m
∑

i=1

yi = 1,

since multiplying y by a positive scalar does not affect any of the inequalities.
So all we need to show is that (3) and (4) are equivalent statements about

the matrix A, which is the content of the following theorem from linear algebra,
whose proof, using Farkas’s Lemma, is in the appendix.

Theorem 2. Let A be any m× n matrix, then:

(>x≥ 0 : Ax< 0)↔ (∃y≥ 0 : y 6= 0 and yA≥ 0)

The next theorem relates the notion of strict dominance to the scoring and
betting frameworks.

Theorem 3. The following three statements are equivalent:

(a) There is no two-way Dutch Book on B.

(b) There is no weight vector x on which B is strictly dominated.

(c) B is Almost Lockean Complete.

Proof. We have already established that (a) and (b) are equivalent in Observation
3.

Consider the following m× n matrix D.

D=





d11 . . . d1n

. . . . . . . . .
dm1 . . . dmn



 ,

where,

di j =























1− t if wi ∈ p j and p j ∈ B

−(1− t) if wi ∈ p j and p j /∈ B

−t if wi /∈ p j and p j ∈ B

t if wi /∈ p j and p j /∈ B

.

Note that the ith row of D corresponds to the vector wi associated with the
world wi as defined in (2) on page 7. Given an n-dimensional non-negative
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weighting vector x, x ·wi < 0 iff taking stakes x on the bets associated with the
belief set B leads to a loss at wi. Since

Dx=





w1 · x
...

wn · x



 ,

the statement, >x : x≥ 0 and Dx< 0, (5)

is equivalent to saying that there is no two-way Dutch Book on B (at the threshold
t), i.e. that (a) and (b) are true.

Considered column-wise, the jth column of D is pj − t if p j ∈ B and −(pj − t)
if p j /∈ B, where pj is the m-dimensional proposition vector as defined in section
3 and t is the m-dimensional vector with value t at all coordinates. There being a
credence function that is Almost Lockean Complete, (c) above, is thus equivalent
to there being a credence vector c such that cT D ≥ 0. This is equivalent to this
simplified condition:

∃y : y≥ 0,y 6= 0, and yD≥ 0. (6)

To complete our proof we note that Theorem 2 establishes that (5) and (6)
are equivalent statements about D. It follows that (a), (b), and (c) are equivalent.

The following conjecture from Easwaran (2016) follows directly from Theo-
rem 3.

Lemma 1 (Easwaran’s Conjunecture). If for all positive weight vectors x, B is not
weakly dominated by some B′, then B is Almost Lockean Complete.

Proof. Given Theorem 3 what we can show is that if B is not weakly dominated
on any positive weighting function, then there is no non-negative weighting
function on which B is strictly dominated. We will prove the contrapositive.
Suppose B is strictly dominated by B′ on some non-negative weight vector x. Let
x′ be a strictly positive weight vector such that

x ′i =

¨

x i if x i > 0

1 otherwise
.

Let B′′ be the following belief set:

B′′ = {pi : pi ∈ B′ and x i 6= 0} ∪ {pi : pi ∈ B and x i = 0}.

We can see that since B′ strictly dominates B on x, B′′ will strictly dominate B
on x′. So B is weakly dominated on the positive weight vector x′.
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Note that the converse of Lemma 1 fails. B can be Almost Lockean Complete
but still weakly dominated on some strictly positive weighting function. This
is because if the credence function c assigns 0 to the proposition {w1} and t to
{w2} then B might include {w1} and not include {w1, w2} and still be Almost
Lockean Complete. It will be weakly dominated (on an even weighting vector)
by a variation B′ that is like B except it includes {w1, w2} but not {w1}.

7 DISCUSSION

Theorems 1 and 3 provide characterizations of Lockean belief sets (both Lockean
Compatible and Almost Lockean Complete) in terms of the betting and accuracy
frameworks.

As motivations for the Lockean thesis the significance of the results depends
a) on how natural the scoring and betting frameworks used are and b) how com-
pelling the conditions put on collections of beliefs relative to these frameworks
are. With respect to the betting framework: the natural question to ask is whether
we are rationally obliged to bet on our beliefs, or against our non-beliefs, in
the ways specified in section 4. While it is natural to think that one is rationally
obliged to bet on one’s full beliefs, it is perhaps less obvious that one has to
bet against one’s non-beliefs. Certainly though, if such betting dispositions are
normatively linked to beliefs, the requirement that we not be subject to Dutch
Books is a plausible condition to put on rational beliefs.25 With respect to the
scoring framework: if the idea of scoring beliefs for accuracy is attractive in
general, then the framework used is quite natural.26 However, we might ask why
rational agents ought to choose belief sets that are not either a) subject to a
sure loss on some weighting vector, or b) strictly dominated on some weighting
vector. It is clear that if we know what the actual weighting vector is we should
avoid a sure loss/strict domination on that vector. But why should we avoid it
on all weighting vectors? Two thoughts are possible here: one is that we have
uncertainty over what the right weights are and we are treating that uncertainty
conservatively by ensuring we are okay (i.e. our choice is not dominated) no
matter what the weighting vector is, the other is that there is unquantifiable
uncertainty about what the weights are (since perhaps we don’t have graded
beliefs at all) and avoiding sure loss or weakly dominated beliefs on any weights
is the best policy.27

25See Pettigrew (2019) for a recent review and discussions of some of the philosophical questions
about whether rational agents are obliged to make bets on their graded beliefs.

26See in particular Easwaran (2016) and Dorst (2019) for robust presentation and defences of it.
27I am grateful to Kevin Dorst for this last point.
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8 FURTHER DIRECTIONS

8.1 CONNECTIONS TO WALD’S COMPLETE CLASS THEOREM

I would conjecture that an alternative characterization of Almost Lockean Com-
pleteness can be found using Wald’s Complete Class Theorem.28 Wald’s Complete
Class Theorem establishes that in a certain class of decision problems any strat-
egy that is not weakly dominated is a rational strategy (i.e. one maximizing
expected reward subject to her credences). Wald’s Complete Class theorem does
not directly apply to the choice problem here: for, as I noted in section 6, there are
some belief sets that are not weakly dominated at some weighting function but
that are also not Almost Lockean Complete. The reason Wald’s Complete Class
theorem does not apply is that it requires the class of strategies to be convex: i.e.
if two strategies are available to an agent then any probabilistic mix of them also
is. If we had allowed mixed strategies in our decision problem, then the Complete
Class Theorem would apply and any strategy that was not weakly dominated
by any mixed strategy would be Almost Lockean Complete. However, the main
point of modeling outright belief is to have a notion of belief that contrasts with
graded belief. If we allowed mixed strategies involving outright belief, it is not
so clear that we have not introduced an analogue of graded beliefs. Nonetheless,
I conjecture that by applying Wald’s Complete Class Theorem we can show that
outright beliefs that are Almost Lockean Complete will be just those that are not
weakly dominated by any mixture of other outright beliefs. Future work might
also investigate how we ought to think about mixed strategies in a system of
outright belief and how such mixed strategies relate to graded beliefs.

8.2 EXTENSIONS TO OTHER SCORING SYSTEMS

Note that we assumed here that at the threshold t, the betting odds, and the
scoring system ratios of cost to rewards, were the same for every proposition.
A simple extension of these results could handle cases in which the odds are
allowed to vary for each proposition.29 In addition to this last extension, future
work might also explore other scoring systems and see whether they also give
rise to Lockean patterns of beliefs. Most interesting, I think, would be to see
what can be found when the additivity assumption is weakened.

8.3 CONNECTION TO ANOTHER CHARACTERIZATION

In this paper I characterized the Lockean belief sets by way of their relationship
to bets and accuracy scoring systems. Fernando (1998, Theorem 4, p. 230) gives

28I am grateful to Gary Chamberlain here for pointing out the relevance of Wald’s Complete Class
Theorem. See, e.g., Ferguson (1967) for details.

29See Easwaran (2016) and Dorst (2019) for the formal description of such a scoring system. The
basic idea is that a n-dimensional vector t would specify the threshold for each proposition. Introducing
this complexity does not alter any of the results above given the linearity of the system.
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a different characterization of Lockeanism that is based on qualitative properties
of sets of beliefs.30 It would be interesting to explore the connections between
this result and those presented here.

APPENDIX: PROOF OF THEOREM 2

Theorem 2. Let A be any m× n matrix, then:

(>x≥ 0 : Ax< 0)↔ (∃y≥ 0 : y 6= 0 and yA≥ 0).

Proof. We start with this widely variant of Farkas’s Lemma result:31

(>x≥ 0 : Ax≥ b)↔ (∃y≤ 0:yA≥ 0 and yb< 0).

We can get the following by taking a universal instantiation of the both sides of
the biconditional. (i.e. going from ‘ p iff q’→ ‘(for all x p) iff (for all x q)’).

(∀b> 0,>x≥ 0 : Ax≥ b)↔ (∀b> 0,∃y≤ 0 : yA≥ 0 and yb< 0).

This can be simplified to:

(>x≥ 0 : Ax> 0)↔ (∃y≤ 0 : y 6= 0 and yA≥ 0).

We can then switch signs on the right-hand side to get:

(>x≥ 0 : Ax> 0)↔ (∃y≥ 0 : y 6= 0 and yA≤ 0).

Theorem 2 follows immediately (by substitution of A with −A):

(>x≥ 0 : Ax< 0)↔ (∃y≥ 0 : y 6= 0 and yA≥ 0).
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