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1 Plurality Inference and Unmarked Plural

Plural noun phrases typically have plurality inferences (alt.: multiplicity inferences).

(1) I saw foxes in the garden.

In negative contexts, they behave as if they are number neutral (unmarked plural) (Sauerland 2003,
Sauerland, Anderssen & Yatsushiro 2005, among others):

(2) a. I didn’t see foxes in the garden.
b. If I see foxes in the garden, I’ll let you know.
c. I left before philosophers arrived.

With certain quantificational contexts they give rise to partial plurality inferences.

(3) a. Exactly one of us saw foxes in the garden.
b. Every applicant submitted their experimental papers.

Theories of the plurality inference postulate number-neutral meaning for plural noun phrases and
derive the plurality inference by some other means.

• Scalar implicature approach (Spector 2007, Zweig 2009, Ivlieva 2013, Mayr 2015)
The plurality inference is a scalar implicature.

• Ambiguity approach (Farkas & de Swart 2010, Grimm 2013, Martí 2018)
Ambiguity between plural and number-neutral meaning. But this cannot deal with (3).

• Homogeneity theory (Križ 2017)
(2) and (3) are due to homogeneity.

• Anti-presupposition approach (Sauerland 2003, Sauerland et al. 2005)
The plurality inference is an anti-presupposition.

2 A New Scalar Implicature Approach

Assumptions from previous analyses:

• The plural is semantically number neutral. This straightforwardly accounts for the (2).

• The plurality inference arises as a scalar implicature in competition with the singular.

But the literal meanings of (4a) and (4b) will be truth-conditionally equivalent on the assumption
that the plural is semantically number neutral.

(4) a. I saw foxes. b. I saw a fox.

In order to generate a scalar implicature, there needs to be some semantic asymmetry between
these two sentences.
Two proposals from the literature:

• Higher-order scalar implicatures (Spector 2007):
The plural competes with the singular that has its own scalar implicature.
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• Local scalar implicatures (Zweig 2009, Ivlieva 2013, Mayr 2015):
The two sentences are truth-conditionally distinct at some sub-constituents.

I propose a new scalar implicature account that doesn’t require these additional mechanisms
(though I do not necessarily deny them).

1. Scalar implicatures can arise from non-propositional aspects of meaning.
The Gricean Maxim of Quantity is about informativity in general, and should apply to non-
propositional aspects of meaning as well.

(5) a. Make your contribution as informative as is required (for the current purposes
of the exchange).

b. Do not make your contribution more informative than is required.

2. Indefinites introduce discourse referents (Karttunen 1976):

(6) a. Bill saw a unicorn. The unicorn had a gold mane.
b. Bill didn’t see a unicorn. *The unicorn had a gold mane.

Let us say that the appearance of an indefinite noun phrase establishes a “discourse
referent” just in case it justifies the occurrence of a coreferential pronoun or a definite
noun phrase later in the text. (Karttunen 1976:366)

Information about discourse referents is part of the meaning of a sentence, distinct from
its propositional/truth-conditional content.

(7) a. John has a wife. She is French.
b. ??John is married. She is French.

(8) a. One of the ten marbles is not in the bag. It’s probably under the sofa.
b. Nine of the ten marbles are in the bag. ??It’s probably under the sofa.

Karttunen (1976) discusses what kind of operators ‘kill’ discourse referents.

• This idea was later formalized in dynamic semantics (Kamp 1981, Heim 1983).
• Modern versions of dynamic semantics talks about discourse referents introduced by
various quantifiers (van den Berg 1996, Nouwen 2003a, Brasoveanu 2007):

(9) a. Exactly onex student passed. Shex solved a difficult problem.
b. Mostx students passed. Theyx studied hard.

as well as complex interactions between indefinites and quantifiers (‘quantificational
subordination’):

(10) Every PhD student of mine wrote ax long paper.
a. *Itx is about anaphora.
b. They all submitted itx to Journal of Semantics.

2.1 The Plurality Inference as a Quantity Implicature

Claim: the plurality inference is a quantity implicature about possible values of discourse refer-
ents.
E.g. (4a) and (4b) have the same truth-conditions but differ in what kind of discourse referents
they introduce.
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(41) a. I saw foxesx . b. I saw ax fox.

• (41a) introduces a discourse referent x ranging over both singular and plural entities.

• (41b) introduces a discourse referent x ranging only over singular entities.

(41b) yields fewer possible values of x than (41a), so it’s stronger/more informative.
I make use of this semantic asymmetry to generate a (secondary) scalar implicature that what
(41b) would have meant is not what the speaker intended to mean. Consequently, the discourse
referent should range only over plural entities.1

2.2 Negation

This analysis straightforwardly accounts for the behaviour under negation:

(11) a. I didn’t see foxes. b. I didn’t see a fox.

Neither of these sentences introduce a discourse referent at the global level, so their meanings
are completely identical. As a consequence, there’s no semantic asymmetry, and no scalar im-
plicature.

2.3 Quantifiers

One empirical advantage of the scalar implicature theories is that it accounts for partial plurality
inferences in quantified sentences (Spector 2007, Ivlieva 2013).

(12) a. Exactly one of us saw saw foxes. b. Exactly one of us saw a fox.

The present account can deal with this.

• (12a) introduces two discourse referents, one ranging over individuals among us, and one
ranging over singular or plural foxes.

• (12b) introduces two discourse referents, one ranging over individuals among us, and one
ranging over singular foxes.

The (secondary) implicature amounts to that the second discourse referent does not range over
singular papers.

3 Update Semantics

Sentences are translated into formulas, which are interpreted as functions from contexts to con-
texts (‘Context Change Potentials’).

3.1 Basic Update Semantics

Definition 1. (Contexts and Assignments)

• A context is a set of pairs consisting of a possible world w and an assignment a, represent-
ing the shared beliefs among the discourse participants.

• An assignment is a total function from variables to the domain D of the modelM.2

• The possible worlds of context c ,Wc – tw | for some xw , ay P c u.
1Van Rooij (2017) pursues related ideas in a similar framework, but he crucially only derives scalar implicature

based on truth-relevant concepts, i.e. possible worlds/truth-makers, and his analysis suffers from problems with sim-
ple cases of scalar implicatures like some.

2Nothing crucial hinges on this. We could use partial functions instead of total functions.
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• The assignments of context c , Ac – t a | for some xw , ay P c u.

Definition 2. (Update Rules) For any modelM = xD, W , Iy:

[t]aM –

#

I(t) if t is a constant
a(t) if t is a variable

c[P(t1, ... , tn)]M – t xw , ay P c | x[t1]
a, ... , [tn]

a)y P I(w , P) u
c[␣φ]M – t xw , ay P c | t xw , ay u [φ] =Hu

c[(φ^ψ)]M – c[φ][ψ]
c[(t1 = t2)]M – t xw , ay P c | [t1]

a = [t2]
a u

(13) Andrew sat down. ⇝ SatDown(andrew)

3.2 Indefinites and Random Assignment

Indefinites trigger random assignment (Dx is taken to be a formula), which resets the possible
values of x.

Definition 3. (Random Assignment) We’ll write ‘a[x ÞÑ e]’ to mean that assignment that differs
from a at most in that it maps variable x to entity e.

c[Dx] – t xw , a[x ÞÑ e]y | e P D and xw , ay P c u

This semantics accounts for cross-sentential anaphora with an indefinite antecedent:

(14) Ax farmer walked in. Hex sat down.
⇝ (Dx^ Farmer(x)^ WalkedIn(x))^ SatDown(x)

Dx randomly introduces new values for x, and Farmer(x)^ WalkedIn(x) discards those world-
assignment pairs that do not assign x a farmer who walked in in the respective possible worlds.
Then, SatDown(x)will operate on the resulting set of world-assignment pairs, and eliminate those
pairs that assign x an entity that did not sit down in the respective possible worlds.

3.3 Plural Entities

We will allow variables to range over plural entities in addition to singular entities.3

We assume that from any two entities e and f in the domain of the model, a new entity e ‘ f can
be formed that has e and f (and nothing else) as parts, and all of these entities (and only they)
are members of the domain of the model (Link 1983).4

Predicates are also specified for plurality in the standard way. Crucially, we assume that plural
nouns are semantically unmarked and number neutral. A predicate like Farmers is inherently
distributive:

(15) a. e P I(w , Farmer) ô e is a singular entity and e is a farmer in w
b. e P I(w , Farmers)ô each singular part of e is a farmer in w

(We won’t talk about non-distributive predicates, but the semantics is compatible with them.)
Recall that under the assumption that the plural is semantically unmarked, the following two
sentences have the same truth-conditions.

3See Van den Berg (1996:Ch.3) for a similar idea. He eventually proposes a different way to deal with pluralities
where they are encoded in a set of assignments. We’ll come back to this in §5.

4Nothing crucial hinges on the use of individual sums. Sets could be used instead (Landman 1989a,b,
Schwarzschild 1996, Winter 2000).
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(16) a. Andrew wrote ax paper. ⇝ Dx^ Wrote(andrew, x)^ Paper(x)
b. Andrew wrote papersx. ⇝ Dx^ Wrote(andrew, x)^ Papers(x)

However, their dynamic denotations are different. We’ll write a «x b to mean that the two assign-
ments a and b differ at most in the value for x.

(17) a. c[Dx^ Wrote(andrew, x)^ Paper(x)] =

$

&

%

xw , by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for some xw , ay P c , a «x b and
Andrew wrote b(x) in w and
b(x) is singular and b(x) is a paper in w

,

.

-

b. c[Dx^ Wrote(andrew, x)^ Papers(x)] =

$

&

%

xw , by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for some xw , ay P c , a «x b and
Andrew wrote each singular part of b(x) in w and
each singular part of b(x) is a paper in w

,

.

-

In (17b), b(x) can be a plural entity, but not in (17a).5 We will make use of this semantic asym-
metry to derive the plurality inference.

(18) Assume the following worlds:
•w1: Andrew wrote p1 and no other papers.
•w2: Andrew wrote p1 and p2 and no other papers.
•w3: Andrew wrote no papers.

and c = t xw1, ay , xw1, by , xw2, ay , xw2, dy , xw3, dy u.

c[Dx^ Wrote(andrew, x)^ Paper(x)] =

$

&

%

xw1, a[x ÞÑ p1]y , xw1, b[x ÞÑ p1]y ,
xw2, a[x ÞÑ p1]y , xw2, d [x ÞÑ p1]y ,
xw2, a[x ÞÑ p2]y , xw2, d [x ÞÑ p2]y

,

.

-

c[Dx^ Wrote(andrew, x)^ Papers(x)] =

$

’

’

&

’

’

%

xw1, a[x ÞÑ p1]y , xw1, b[x ÞÑ p1]y ,
xw2, a[x ÞÑ p1]y , xw2, d [x ÞÑ p1]y ,
xw2, a[x ÞÑ p2]y , xw2, d [x ÞÑ p2]y ,
xw2, a[x ÞÑ p1 ‘ p2]y, xw2, d [x ÞÑ p1 ‘ p2]y

,

/

/

.

/

/

-

4 Scalar Implicature in Update Semantics

4.1 How to Derive the Plurality Inference

Let csg = c[Dx^ Wrote(andrew, x)^ Paper(x)] and cpl = c[Dx^ Wrote(andrew, x)^ Papers(x)].
Whenever csg and cpl are non-empty and non-equivalent (that is, there are worlds inWc in which
Andrew wrote more than one paper), there is an asymmetric relation, namely:

csg Ă cpl

Note thatWcsg = Wcpl , because the two sentences are truth-conditionally equivalent. The crucial
difference is coming from the assignment functions, i.e. Acsg Ă Acpl .
I propose that the plurality inference is derived by subtracting csg from cpl. For example, in the
case of (17), we get as a result:

␣

xw2, a[x ÞÑ p1 ‘ p2]y , xw2, d [x ÞÑ p1 ‘ p2]y
(

5Note that according this semantics, Andrew wrote a paper is compatible with him having written more than one
paper (as in w2 above). This is fine as a-indefinites are generally non-maximal. Its maximal reading, if it’s available,
needs to be derived by some other means, possibly as an implicature of some kind (see Spector 2007). We will not
deal with this here.
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In w2, Andrew wrote two papers and all the values for x are pluralities consisting of multiple
papers.
More generally, let c 1 be the resulting context after the above subtraction operation. Then, when-
ever c 1 ‰ H, Andrew wrote multiple papers inWc 1 and for each a P Ac 1 , a(x) is a plural entity. This
is the plurality inference.
Consequently, we account for the fact that the plural papers can be referred back to later in the
discourse by a plural pronoun.

(19) Andrew wrote papersx. Theyx are about Slovenian duals.

4.2 Scalar Implicature and Informativity in Dynamic Semantics

The Gricean Maxim of Quantity says:

(20) a. Make your contribution as informative as is required (for the current purposes of the
exchange).

b. Do not make your contribution more informative than is required.

The notation of ‘informativity’ is often understood in terms of truth-conditional entailment:

(21) φ is truth-conditionally more informative than ψ iff φ entails ψ but ψ does not entail φ
(alt.: φ asymmetrically entails ψ).

In our update semantics, this can be paraphrased as follows:

Definition 4. (Truth-Conditional Informativity) φ is truth-conditionally more informative than ψ iff
for each context c ,Wc[φ] Ď Wc[ψ] but in some context c 1,Wc 1[ψ] Ę Wc 1[φ].

In update semantics we can have a different notation of informativity:

Definition 5. (Dynamic Informativity)φ is dynamically more informative thanψ iff for each context
c , c[φ] Ď c[ψ] but in some context c 1, c 1[ψ] Ę c 1[φ].

This is distinct from truth-conditional informativity, because the asymmetry may come from the
anaphoric potentials encoded in the assignments. And this is exactly what we use to derive the
plurality inference.
I formulate the scalar implicature computation as follows.6

(22) If φ has an alternative ψ that is dynamically more informative, then an assertion of φ in
c by a cooperative speaker is interpreted as c[φ]´ c[ψ].

As we have already seen, (22) gives rise to the plurality inference, e.g. (18).

4.2.1 Negation (and other connectives)

Recall that in negative sentences plurality inferences are not observed. This is explained as fol-
lows: under negation, the singular and plural sentences have the exact same dynamic meaning.
So neither of them is more informative than the other (under either notion of informativity):

(23) a. c[␣(Dx^ Wrote(andrew, x)^ Paper(x))] = t xw , ay P c | Andrew wrote no paper in w u
b. c[␣(Dx^ Wrote(andrew, x)^ Papers(x))] = t xw , ay P c | Andrew wrote no paper in w u

Other connectives are perhaps more complicated, and I leave them for future research for now.
Some considerations:

6I’m only dealing with secondary implicatures in the sense of Sauerland (2004) here. See §6
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• It’s not realistic to analyze conditional as material implication (as Heim 1983 said from
the beginning). Perhaps a plural in a conditional does give rise to an inference, because a
conditional enables modalized crosssentential anaphora (alt.: modal subordination).

(24) If Andrew writes papers, they will be about morphology. I won’t read them.

• Disjunction gives rise to its own scalar implicature. Here we might need embedded scalar
implicature?

(25) Andrew was reading papers or writing a book.

4.2.2 Most

The above mechanism of scalar implicature computation works for other types of scalar impli-
catures more generally, e.g. most, which by assumption competes with all.
Oneway to deal with generalized quantifiers in dynamic semantics is via themaximality operator
(Van den Berg 1996).

Definition 6. (Maximality Operator)

c[Mx(φ)] = t xw , ay P c[Dx ^φ] | for no xw , a1y P c[Dx ^φ], a(x) Ă a1(x) u

In words, for each xw , ay P c[Mx(φ)], a assigns a maximal value to x that satisfies φ in w .
This operator is useful in defining (selective) generalized quantifiers, because they can be seen
as expressing relations between two maximal entities (which stand for sets in the classical set-
ting). #(e) is the number of atomic entities in e.7

(26) a. c[Mostx(φ)(ψ)] =

$

&

%

xw , ay P c[Mx(φ^ψ)]

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for some xw , a1y P c[Mx(φ)]
#(a(x))
#(a1(x))

"
1

2

,

.

-

b. c[Allx(φ)(ψ)] =

"

xw , ay P c[Mx(φ^ψ)]

ˇ

ˇ

ˇ

ˇ

for some xw , a1y P c[Mx(φ)]
#(a(x)) = #(a1(x))

*

(27) Let us assume that in w1, w2, w3 and w4, there are exactly 10 linguists, ℓ1, …, ℓ10.

•w1: All linguists smoke.
•w2: Only ℓ1, …, ℓ8 smoke.

•w3 Only ℓ1, …, ℓ3 smoke.
•w4: No linguists smoke.

a. t xw1, a1y , xw2, a2y , xw3, a3y , xw4, a4y u [Mostx(Linguists(x))(Smoke(x))]
= t xw1, a1[x ÞÑ ℓ1 ‘ ¨ ¨ ¨ ‘ ℓ10]y , xw2, a2[x ÞÑ ℓ1 ‘ ¨ ¨ ¨ ‘ ℓ8]y u

b. t xw1, a1y , xw2, a2y , xw3, a3y , xw4, a4y u [Allx(Linguists(x))(Smoke(x))]
= t xw1, a1[x ÞÑ ℓ1 ‘ ¨ ¨ ¨ ‘ ℓ10]y u

The all-alternative is dynamically more informative. Consequently, we derive the scalar implica-
ture, and end up with the following singleton set, as desired.

t xw2, a2[x ÞÑ ℓ1 ‘ ¨ ¨ ¨ ‘ ℓ8]y u

This captures so-called refset anaphora (Van den Berg 1996, Nouwen 2003b). Refset anaphora is
anaphora to the entities that satisfy both the restrictor and nuclear scope as in (28).

(28) Mostx linguists smoke. Theyx (= the linguists who smoke) also drink.
7In order to deal with mass nouns, whichmost and all are compatible with, we need a more general definition of #.
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5 Plurality Inferences in Quantificational Contexts

One of the advantages of scalar implicature theories of plurality inferences is that they account
for plurality inferences in non-monotonic contexts:

(29) a. Exactly onex linguist wrote papersy last year.
b. Exactly onex linguist wrote ay paper last year.

(29a) implies that the only linguist who wrote papers last year wrote more than one paper.
Our analysis derives this inference without resorting to local computation of scalar implicatures
or higher-order scalar implicatures (unlike other scalar implicature theories, e.g. Spector 2007, Ivlieva
2013).

• (29a) introduces two discourse referents, one ranging over singular linguists, and one rang-
ing over singular or plural papers.

• (29b) introduces two discourse referents, one ranging over singular linguists, and one rang-
ing over singular papers.

The latter is dynamically stronger.

5.1 Plural Information States

In order to deal with (29), we need to be able to encode the dependency between two variables, x
and y. We will adopt Van den Berg’s (1996) plural information states (see also Nouwen 2003b, 2007,
Brasoveanu 2007, 2008, 2010).
The idea is to model contexts as a pair consisting of a possible world and a set of assignments.
Following Brasoveanu (2008) and Dotlačil (2013) we allow assignments to return plural entities.

Definition 7. (Assignments and contexts)

• The domain D of the modelM is closed under sum-formation ‘.

• An assignment is a total function from variables to D.

• A context is a set of pairs consisting of a possible world w and a set A of assignments.

• The possible worlds of a contextWc is defined as tw | for some xw , Ay P c u.

• The assignment sets of a context Ac is defined as tA | for some xw , Ay P c u.

Definition 8. (Plural Dynamic Semantics)

[t]AM –

#

I(t) if t is a constant
À

t a(t) | a P A u if t is a variable

c[P(t1, ... , tn)]M – t xw , Ay P c | x[t1]
A, ... , [tn]

A)y P Iw (P) u
c[␣φ]M – t xw , Ay P c | t xw , Ay u [φ] =Hu

c[(φ^ψ)]M – c[φ][ψ]
c[(t1 = t2)]M – t xw , Ay P c | [t1]

A = [t2]
A u

From now on, we will write A(x) instead of
À

t a(x) | a P A u.

Definition 9. (Random Assignment)

c[Dx] –

$

&

%

xw , By

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

for some xw , Ay P c ,
for each a P A, there is b P B such that a «x b, and
for each b P B, there is a P A such that a «x b

,

.

-
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We keep the same assumptions about the semantics of nouns as before:

(30) a. e P I(w , Farmer) ô e is an singular entity and is a farmer in w
b. e P I(w , Farmers)ô each singular part of e is a farmer in w

c[Farmer(x)] = t xw , Ay P c | A(x) P Iw (Farmer) u

=

"

xw , Ay P c
ˇ

ˇ

ˇ

ˇ

for any a, a1 P A, a(x) = a1(x) and
the unique e = a(x) for any a P A is a farmer in w

*

c[Farmers(x)] = t xw , Ay P c | A(x) P Iw (Farmers) u

Definition 10. (Maximality Operator)

c[Mx(φ)] – t xw , Ay P c[Dx^φ] | for no xw , A1y P c[Dx^φ], A(x) Ă A1(x) u

5.2 ‘Exactly One’

(31) c[ExactlyOnex(φ)(ψ)] = t xw , Ay P c[Mx(φ^ψ)] | #(A(x)) = 1 u

(32) Exactly onex linguist smokes. ⇝ ExactlyOnex(Linguist(x))(Smokes(x))

(33) Consider the following possible worlds.
•w1: Andrew, a linguist, smokes. No other linguist smokes.
•w2: Bill, a linguist, smokes. No other linguist smokes.
•w3: Andrew and Bill, both linguists, smoke. No other linguist smokes.
•w4: No linguist smokes.

Firstly, let:
"

xw1, A1y , xw2, A2y ,
xw3, A3y , xw4, A4y

*

[Mx(Linguist(x)^ Smokes(x))] = c 1

For each xw , Ay P c 1, and for each a P A, a must be an atomic entity that is a linguist in w and
smokes in w . So w4 will not be inWc 1 .
But we will still have pairs like xw3, Ay, as long as each a P A assigns x either Andrew or Bill, and
but not Andrew ‘ Bill, but at the same time, it’s required that A(x) = Andrew ‘ Bill, due to the
maximality operator.
The number restriction of exactly one filters out the pairs whose world is w3.

"

xw1, A1y , xw2, A2y ,
xw3, A3y , xw4, A4y

*

[ExactlyOnex(Linguist(x))(Smokes(x))]

= t xw , Ay P c 1 | #(A(x)) = 1 u

= t xw1, A1
1y P tw1, A1 u [Dx ] | A1

1(x) = Andrew u Y t xw2, A1
2y P tw2, A2 u [Dx ] | A1

2(x) = Bill u

5.3 Plurality Inferences in Non-monotonic Contexts

(34) a. Exactly onex linguist wrote papersy (last year).
⇝ ExactlyOnex(Linguist(x))(Dy^ Papers(y)^ Wrote(x, y))

b. Exactly onex linguist wrote ay paper (last year).
⇝ ExactlyOnex(Linguist(x))(Dy^ Paper(y)^ Wrote(x, y))

The idea is the same as before. The singular version (34b) is dynamically more informative than
the plural version (34a), although they are truth-conditionally equivalent. This gives rise to an
implicature that y is assigned a plural entity as its value.
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(35) Consider the following worlds.
•w1: Andrew, a linguist, wrote exactly one paper, p1. No other linguistwrote any paper.
•w2: Andrew, a linguist, wrote exactly two papers, p1 and p2. No other linguist wrote
any paper.
•w3: Bill, a linguist, wrote exactly one paper, p3. No other linguist wrote any paper.
•w4: Bill, a linguist, wrote exactly two papers, p3 and p4. No other linguist wrote any
paper.
•w5: Andrew, a linguist, wrote exactly one paper, p1 and Bill, a linguist, wrote exactly
one paper, p3.
•w6: No linguist wrote any paper.

$

&

%

xw1, A1y , xw2, A2y ,
xw3, A3y , xw4, A4y ,
xw5, A5y , xw6, A6y

,

.

-

[Mx(Linguist(x)^ Dy^ Paper(y)^ Wrote(x, y))] = c 1
sg

$

&

%

xw1, A1y , xw2, A2y ,
xw3, A3y , xw4, A4y ,
xw5, A5y , xw6, A6y

,

.

-

[Mx(Linguist(x)^ Dy^ Papers(y)^ Wrote(x, y))] = c 1
pl

Note thatWc 1
sg
= Wc 1

pl
= tw1, w2, w3, w4, w5 u.

• For each xw , Ay P c 1
sg, each a P A, a(y) is either an atomic entity that is a paper in w , and

furthermore, a(x) is the author of a(y) in w .

• For each xw , Ay P c 1
pl, each a P A, a(y) is either an atomic entity that is a paper or a plural

entity that is made up of multiple papers in w , and furthermore, a(x) is the author of a(y) in
w .

The number restriction of exactly one will eliminate those pairs whose possible world is w5.
$

&

%

xw1, A1y , xw2, A2y ,
xw3, A3y , xw4, A4y ,
xw5, A5y , xw6, A6y

,

.

-

[ExactlyOnex(Linguist(x))(Dy^ Paper(y)^ Wrote(x, y))]

= t xw , Ay P c 1
pl | #(A(x)) = 1 u

=
ď

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

t xw1, A1
1y P tw1, A1 u [Dx^ Dy] | A1(x) = Andrew and A1(y) = p1 u ,

"

xw2, A1
2y P tw2, A2 u [Dx^ Dy]

ˇ

ˇ

ˇ

ˇ

A1
2(x) = Andrew and

either A1
2(y) = p1 or A1

2(y) = p2

*

,

t xw3, A1
3y P tw3, A3 u [Dx^ Dy] | A1

3(x) = Bill and A1
3(y) = p3 u ,

"

xw4, A1
4y P tw4, A4 u [Dx^ Dy]

ˇ

ˇ

ˇ

ˇ

A1
4(x) = Benjmain and

either A1
4(y) = p3 or A1

4(y) = p4

*

,

/

/

/

/

/

/

.
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/

/

/

/

/

-

=c2
sg

$

&

%

xw1, A1y , xw2, A2y ,
xw3, A3y , xw4, A4y ,
xw5, A5y , xw6, A6y

,

.

-

[ExactlyOnex(Linguist(x))(Dy^ Papers(y)^ Wrote(x, y))]

= t xw , Ay P c 1
pl | #(A(x)) = 1 u

=
ď

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

t xw1, A1
1y P tw1, A1 u [Dx^ Dy] | A1

1(x) = Andrew and A1
1(y) = p1 u ,

"

xw2, A1
2y P tw2, A2 u [Dx^ Dy]

ˇ

ˇ

ˇ

ˇ

A1
2(x) = Andrew and

either A1
2(y) = p1 or A1

2(y) = p2 or A1
2(y) = p1 ‘ p2

*

,

t xw3, A1
3y P tw3, A3 u [Dx^ Dy] | A1

3(x) = Bill and A1
3(y) = p3 u ,

"

xw4, A1
4y P tw4, A4 u [Dx^ Dy]

ˇ

ˇ

ˇ

ˇ

A1
4(x) = Bill and

either A1
4(y) = p3 or A1

4(y) = p3 or A1
4(y) = p3 ‘ p4

*

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-
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Since c2
sg Ă, c2

pl, a scalar implicature is generated, yielding the following set:

t xw2, A1
2y P tw2, A2 u [Dx^ Dy] | A1

2(x) = Andrew and A1
2(y) = p1 ‘ p2 u

Y

t xw4, A1
4y P tw4, A4 u [Dx^ Dy] | A1

4(x) = Benjmain and A1
4(y) = p3 ‘ p4 u

So in the end, onlyw2 andw4 survived, as desired. Furthermore, this accounts for cross-sentential
anaphora naturally:

(36) Hex submitted themy to journals.

5.4 ‘Everyone’

The same mechanism makes good predictions for other quantificational contexts.

(37) a. Everyonex wrote papersy. ⇝ Everyonex(Dy^ Papers(y)^ Wrote(x, y))
b. Everyonex wrote ay paper. ⇝ Everyonex(Dy^ Paper(y)^ Wrote(x, y))

The predicted scalar inference is that at least one person wrote multiple papers.
This is because the singular version (37b) will produce a set of pairs xw , Ay such that for each
a P A, a(y) is an atomic entity that is a paper in w , and a(x) is its author in w , and A(x) is the
plurality consisting of all the (relevant) people.
The pairs resulting from (37a) will contain in addition to these pairs, those pairs xw , Ay such that
for some a P A, a(y) is a plural entity that is a paper in w . And only these pairs remain after
computing the scalar implicature.
Here are the details. First, we need the distributivity operator, which creates quantificational
dependency.8

Definition 11. (Distributivity Operator)

c[Dx(φ)] –

"

xw , A1y

ˇ

ˇ

ˇ

ˇ

for some xw , Ay P c , A(x) = A1(x) and
for each e Ďa A(x), xw , A1æxÞÑey P t xw , AæxÞÑey u [φ]

*

e Ďa E :ô e Ď E and e is atomic
Aæx ÞÑe – t a P A | a(x) = e u

(38) c[Everyonex(φ)] = t xw , Ay P c[Mx(Dx(Human(x)^φ))] | A(x) =
À

t e P D | e is a human in w u u

(39) Consider the following worlds, each with three humans, Andrew, Bill, and Chris.
•w1: Andrew wrote exactly one paper, p1, Bill wrote exactly one paper, p2, and Chris
wrote exactly one paper, p3.
•w2: Andrew wrote exactly two papers, p1 and q1, Bill wrote exactly two papers, p2
and q2, and Chris wrote exactly two papers, p3 and q3.
•w3: Andrew wrote exactly two papers, p1 and q1, Bill wrote exactly one paper p2 and
Chris wrote exactly one paper p3.
•w4: Andrew wrote exactly two papers, p1 and q1, Bill and Chris wrote no papers.
•w5: No one wrote any paper.

8We actually have to deal with partiality more carefully in the general case, but to keep the exposition simple, I’ll
ignore it (this is fine because we are only talking about cases involving random assignment). See Van den Berg (1996)
and Nouwen (2003b) in particular. See also Nouwen (2003b) and Nouwen (2007) for an undergeneration problem of
this system and a solution to it.
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"

xw1, A1y , xw2, A2y , xw3, A3y

xw4, A4y , xw5, A5y

*

[Mx(Dx(Human(x)^ Dy^ Paper(y)^ Wrote(x, y)))] = c 1
sg

"

xw1, A1y , xw2, A2y , xw3, A3y

xw4, A4y , xw5, A5y

*

[Mx(Dx(Human(x)^ Dy^ Paper(y)^ Wrote(x, y)))] = c 1
pl

Wc 1
sg
= Wc 1

pl
= tw1, w2, w3, w4 u. Note that w4 is not excluded at this point.

•For each xw 1, A1y P c 1
sg, for each a1 P A1, a(y) is an atomic entity that is a paper in w 1,

and a(x) is its author in w 1.
•For each xw 1, A1y P c 1

pl, for each a1 P A1, each atomic part of a(y) is a paper in w 1, and
a(x) is the author of the paper or papers in w 1.
•Fro each xw 1, A1y P c 1

sg/pl, A
1(x) = Chris if w 1 = w4 and A1(x) = Andrew‘Bill‘Chris,

if otherwise.
"

xw1, A1y , xw2, A2y , xw3, A3y

xw4, A4y , xw5, A5y

*

[Everyonex(Dy^ Paper(y)^ Wrote(x, y))]

= t xw 1, A1y P c 1
pl | A1(x) =

à

t e P D | e is a human in w u u

=
ď
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xw1, A1
1y P t xw1, A1y u [Dx ^ Dy ]

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A1
1(x) = Andrew‘ Bill‘ Chris and

A1
1(y) = p1 ‘ p2 ‘ p3 and for each a1 P A1

1,
a1(x) = Andrew iff a1(y) = p1, and
a1(x) = Bill iff a1(y) = p2, and
a1(x) = Chris iff a1(y) = p3
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xw2, A1
2y P t xw2, A2y u [Dx ^ Dy ]

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A1
2(x) = Andrew‘ Bill‘ Chris and

A1
2(y) = p1 ‘ p2 ‘ p3 ‘ q1 ‘ q2 ‘ q3 and

for each a1 P A1
2,

a1(x) = Andrew iff a1(y) = p1 or a1(y) = q1, and
a1(x) = Bill iff a1(y) = p2 or a1(y) = q2, and
a1(x) = Chris iff a1(y) = p3 or a1(y) = q3
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%

xw3, A1
3y P t xw3, A3y u [Dx ^ Dy ]

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A1
3(x) = Andrew‘ Bill‘ Chris and

A1
3(y) = p1 ‘ p2 ‘ p3 ‘ q1 and

for each a1 P A1
3,

a1(x) = Andrew iff a1(y) = p1 or a1(y) = q1, and
a1(x) = Bill iff a1(y) = p2, and
a1(x) = Chris iff a1(y) = p3
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"

xw1, A1y , xw2, A2y , xw3, A3y

xw4, A4y , xw5, A5y

*

[Everyonex(Dy^ Paper(y)^ Wrote(x, y))]

= t xw 1, A1y P c 1
pl | A1(x) =

à

t e P D | e is a human in w u u
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xw1, A1
1y P t xw1, A1y u [Dx ^ Dy ]

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A1
1(x) = Andrew‘ Bill‘ Chris and

A1
1(y) = p1 ‘ p2 ‘ p3 and for each a1 P A1

1,
a1(x) = Andrew iff a1(y) = p1, and
a1(x) = Bill iff a1(y) = p2, and
a1(x) = Chris iff a1(y) = p3
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xw2, A1
2y P t xw2, A2y u [Dx ^ Dy ]
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ˇ

ˇ

ˇ

ˇ

A1
2(x) = Andrew‘ Bill‘ Chris and

A1
2(y) = p1 ‘ p2 ‘ p3 ‘ q1 ‘ q2 ‘ q3 and

for each a1 P A1
2,

a1(x) = Andrew iff a1(y) = p1 or a1(y) = q1
or a1(y) = p1 ‘ q1, and

a1(x) = Bill iff a1(y) = p2 or a1(y) = q2
or a1(y) = p2 ‘ q2, and

a1(x) = Chris iff a1(y) = p3 or a1(y) = q3
or a1(y) = p3 ‘ q3
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A1
3(x) = Andrew‘ Bill‘ Chris and

A1
3(y) = p1 ‘ p2 ‘ p3 ‘ q1 and

for each a1 P A1
3,

a1(x) = Andrew iff a1(y) = p1 or a1(y) = q1
or a1(y) = p1 ‘ q1, and

a1(x) = Bill iff a1(y) = p2, and
a1(x) = Chris iff a1(y) = p3
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As before, c2
sg Ă c2

pl, and after computing the scalar implicature, we will get a subset of
c2
pl such that for each xw

2, A2y in this set, there is at least one a2 P A2 such that a2(y) is
a plural entity. This means that w1 is no longer in this set.

Again, we don’t need local computation of scalar implicatures, or higher order implicatures.
also, for Spector (2007), the default reading is what looks like the embedded scalar reading, i.e.
everyonewrotemultiple papers.9 This is because the crucial alternative with a scalar implicature
means (40).

(40) Everyone wrote at least one paper and not every wrote multiple papers.

5.5 Bonus: Every + Disjunction

The current account derives Crnič, Chemla & Fox’s (2015) observation about disjunction under a
universal quantifier.

(41) Everyone speaks French or German.

According to the ‘standard view’, this sentence has as scalar implicatures the negations of (42).

(42) a. Everyone speaks French.
b. Everyone speaks German.
c. Everyone speaks both French and German.

Crnič et al. (2015) point out that this prediction is too strong, because (41) is judged as compat-
ible with (42a) or (42b) (though not both at the same time). In other words, we do not want to
have the negations of (42a) and (42b) as scalar implicatures.
Crnič, Chemla&Fox’s (2015) propose that the relevant scalar implicatures are locally exhaustified
versions of (42a) and (42b):

9Similarly for Križ (2017). Many thanks to Manuel Križ (p.c.) for discussion on this.
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(43) a. Everyone speaks French but not German.
b. Everyone speaks German but not French.

Under the present account, local exhaustification is unnecessary. First, we can treat or as an
existential quantifier, which makes sense since it feeds anaphora:

(44) Bill speaks French orx German (but I don’t remember which). He learned itx at school.

Assume that we have the following alternatives:

(45) Everyonex speaks French ory German.
a. Everyonex speaks Frenchy.
b. Everyonex speaks Germany.
c. Everyonex speaks French andy German.

In the standard view, the scalar implicatures derived from (45a) and (45b) are too strong, but in
the current view, we are not excluding all possible worldswhere everyone speaks French or where
everyone speaks German, but only those pairs consisting of one of such possible worlds and an
assignment A such that A(x) is French or A(x) is German. Therefore, we keep those possible
worlds paired with an assignment A that is not uniform with respect to x, that is, for some a P A,
a(x) is French, and for other a P A, a(x) is German.
More concretely:

(46) Assume the following possible worlds:
•w1: Everyone speaks French and no one speaks German.
•w2: Everyone speaks German and no one speaks French.
•w3: Some speak French but not German and some speak German and not French.
•w4: Everyone speaks French and some speak German.
•w5: Everyone speaks German and no one speaks French.
•w6: Everyone speaks both French and German.

"

xw1, A1y , xw2, A2y , xw3, A3y

xw4, A4y , xw5, A5y , xw6, A6y

*

[Mx(Dx(Human(x)^ Dy^ French(y)^ Speak(y)))] = c 1
_

"

xw1, A1y , xw2, A2y , xw3, A3y

xw4, A4y , xw5, A5y , xw6, A6y

*

[Mx(Dx(Human(x)^ Dy^ French(y)^ Speak(y)))] = c 1
F

"

xw1, A1y , xw2, A2y , xw3, A3y

xw4, A4y , xw5, A5y , xw6, A6y

*

[Mx(Dx(Human(x)^ Dy^ German(y)^ Speak(y)))] = c 1
G

"

xw1, A1y , xw2, A2y , xw3, A3y

xw4, A4y , xw5, A5y , xw6, A6y

*

[Mx(Dx(Human(x)^ Dy^ German(y)^ Speak(y)))] = c 1
^

Everyx throws away those pairs xw , Ay such that A(x) is not all people in w .
Crucially, after the scalar implicature, pairs like xw4, A1

4y will remain, where A1
4(y) = French ‘

German but for some a, b P A1
4, a(y) = French and b(y) = German, because such pairs are not

generated by the alternatives.
Prediction (to be tested): it in the following must vary between French and German (across lin-
guistic subjects).

(47) Everyone speaks French or German. They all learned it at school.
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This sentence should be false in the following model with five people:

• Jean and Marie speak French natively, learned German at school.

• Wataru speaks Japanese natively, learned German at school.

• Katie speaks English natively, learned German at school.

• Ivan speaks Russian natively, learned German at school.

vs.

• Jean and Marie speak French natively, learned German at school.

• Wataru speaks Japanese natively, learned French at school.

• Katie speaks English natively, learned German at school.

• Ivan speaks Russian natively, learned French at school.

6 Conclusions and Further Thoughts

What I proposed is a rather conservative account of plurality inferences in the sense that itmakes
use of two old ideas, the Gricean Maxim of Quantity and dynamic semantics. It explains a lot of
data without additional mechanisms such as local scalar implicatures or higher-order implica-
tures (although I probably need local computation for some data, e.g. embedding under universal
quantifiers).
Being a scalar implicature theory, it crucially assumes that the plural is number neutral, but this
assumption is not so innocuous. See discussion in Farkas & de Swart (2010), Bale & Khanjian
(2014).
The idea of implicatures based on anaphoric potentials might give a nice account of the seman-
tics and pragmatics of items like ‘epistemic indefinites’ and superlative modifiers.

6.1 Primary vs. Secondary Implicatures

Two types of conversational implicatures are often distinguished, primary and secondary (Sauer-
land 2004).

(48) Some of these movies are interesting.
a. ␣the speaker believes all of these movies are interesting (Primary)
b. the speaker believes ␣all of these movies are interesting (Secondary)

Standard Gricean reasoning generates a primary implicature, which may be strengthened to a
secondary implicature via additional assumptions, e.g. Opinionatedness.

(49) a. Suppose that the speaker obeys the Maxim of Quantity.
b. If she is certain that the alternative sentence All of these movies are interesting is

true, she should have uttered it.
c. Because she didn’t, she is not certain that it is true.

If there’s reason to believe that the speaker is opinionated, i.e. she knows that all of the movies
are interesting or that not all of the movies are interesting, then it follows from (49b) that the
speaker is certain that not all of the movies are interesting.
Under our account of the plurality inference, we can reformulate the reasoning in termsof not only
the speaker’s propositional beliefs, but referents the speaker believes a variable varies across.

(50) a. Suppose that the speaker obeys the Maxim of Quantity.
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b. If she intends to restrict the referents of the variable only to atomic entities, she
should have uttered Andrew wrote a paper.

c. Because she didn’t, she didn’t intend to restrict the referents only to atomic entities.

The resulting primary implicature (50b) is weaker than the plurality inference.
To derive the plurality inference, we just need an extra assumption similar to Opinionatedness,
e.g. either the speaker believes that the variable should only vary across atomic entities, or the
speaker believes that it should only vary across plural entities.

6.2 Definite Plurals

Definite plurals also give rise to plurality inferences.

(51) a. Chris’s student is smart.
b. Chris’s students are smart.

The two sentences have different presuppositions.

• If Chris is known to have exactly one student, then (51a) and (51b) will mean the same
thing.

• Otherwise, (51a) is not usable. So (51b) should be the only option, and should not have a
plurality inference.

Sauerland (2003) derives the plurality inferences of plural definites as anti-presuppositions. I
could adopt this analysis cases like (51).
Mayr (2015) observes, however, that the anti-presuppositional account wrongly predicts definite
plurals to be felicitous in contexts where the exact number is not known. His main data is the
following:10

(52) Context: It is common belief that Paul either wrote exactly one song or several songs.
a. #The song is good.
b. #The songs are good. (Mayr 2015:211)

Mayr (2015) proposes instead that they should be accounted for by NP-level embedded scalar
implicatures, and always have plurality inferences.
But do definite plurals always have plurality inferences?

(53) I’ve never met a female Japanese philosopher or read her papers.

Speculation: The anomaly of (52) might be due to something about restrictions on when the
opinionatedness assumption holds and when it does not?
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